Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Genome Biol ; 24(1): 13, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683094

RESUMO

BACKGROUND: The Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information. RESULTS: Here, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan. CONCLUSION: Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril.


Assuntos
Anseriformes , Influenza Aviária , Animais , Transcriptoma , Células Endoteliais , Austrália
2.
Virology ; 576: 42-51, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150229

RESUMO

Bats are important reservoirs for viruses of public health and veterinary concern. Virus studies in Australian bats usually target the families Paramyxoviridae, Coronaviridae and Rhabdoviridae, with little known about their overall virome composition. We used metatranscriptomic sequencing to characterise the faecal virome of grey-headed flying foxes from three colonies in urban/suburban locations from two Australian states. We identified viruses from three mammalian-infecting (Coronaviridae, Caliciviridae, Retroviridae) and one possible mammalian-infecting (Birnaviridae) family. Of particular interest were a novel bat betacoronavirus (subgenus Nobecovirus) and a novel bat sapovirus (Caliciviridae), the first identified in Australian bats, as well as a potentially exogenous retrovirus. The novel betacoronavirus was detected in two sampling locations 1375 km apart and falls in a viral lineage likely with a long association with bats. This study highlights the utility of unbiased sequencing of faecal samples for identifying novel viruses and revealing broad-scale patterns of virus ecology and evolution.


Assuntos
Quirópteros , Coronavirus , Sapovirus , Animais , Humanos , Retroviridae/genética , Viroma , Austrália , Mamíferos
3.
J Virol ; 96(20): e0115222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173189

RESUMO

Bats are recognized as important reservoirs of viruses deadly to other mammals, including humans. These infections are typically nonpathogenic in bats, raising questions about host response differences that might exist between bats and other mammals. Tetherin is a restriction factor which inhibits the release of a diverse range of viruses from host cells, including retroviruses, coronaviruses, filoviruses, and paramyxoviruses, some of which are deadly to humans and transmitted by bats. Here, we characterize the tetherin genes from 27 bat species, revealing that they have evolved under strong selective pressure, and that fruit bats and vesper bats express unique structural variants of the tetherin protein. Tetherin was widely and variably expressed across fruit bat tissue types and upregulated in spleen tissue when stimulated with Toll-like receptor agonists. The expression of two computationally predicted splice isoforms of fruit bat tetherin was verified. We identified an additional third unique splice isoform which includes a C-terminal region that is not homologous to known mammalian tetherin variants but was functionally capable of restricting the release of filoviral virus-like particles. We also report that vesper bats possess and express at least five tetherin genes, including structural variants, more than any other mammal reported to date. These findings support the hypothesis of differential antiviral gene evolution in bats relative to other mammals. IMPORTANCE Bats are an important host of various viruses which are deadly to humans and other mammals but do not cause outward signs of illness in bats. Furthering our understanding of the unique features of the immune system of bats will shed light on how they tolerate viral infections, potentially informing novel antiviral strategies in humans and other animals. This study examines the antiviral protein tetherin, which prevents viral particles from escaping their host cell. Analysis of tetherin from 27 bat species reveals that it is under strong evolutionary pressure, and we show that multiple bat species have evolved to possess more tetherin genes than other mammals, some of which encode structurally unique tetherins capable of activity against different viral particles. These data suggest that bat tetherin plays a potentially broad and important role in the management of viral infections in bats.


Assuntos
Quirópteros , Viroses , Vírus , Humanos , Animais , Antígeno 2 do Estroma da Médula Óssea/genética , Antivirais , Receptores Toll-Like
4.
J Gen Virol ; 103(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35972225

RESUMO

Bats have been implicated as the reservoir hosts of filoviruses in Africa, with serological evidence of filoviruses in various bat species identified in other countries. Here, serum samples from 190 bats, comprising 12 different species, collected in Australia were evaluated for filovirus antibodies. An in-house indirect microsphere assay to detect antibodies that cross-react with Ebola virus (Zaire ebolavirus; EBOV) nucleoprotein (NP) followed by an immunofluorescence assay (IFA) were used to confirm immunoreactivity to EBOV and Reston virus (Reston ebolavirus; RESTV). We found 27 of 102 Yinpterochiroptera and 19 of 88 Yangochiroptera samples were positive to EBOV NP in the microsphere assay. Further testing of these NP positive samples by IFA revealed nine bat sera that showed binding to ebolavirus-infected cells. This is the first report of filovirus-reactive antibodies detected in Australian bat species and suggests that novel filoviruses may be circulating in Australian bats.


Assuntos
Quirópteros , Ebolavirus , Doença pelo Vírus Ebola , Animais , Anticorpos Antivirais , Austrália , Doença pelo Vírus Ebola/veterinária , Nucleoproteínas
5.
Global Health ; 18(1): 73, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883185

RESUMO

The emergence of SARS-CoV-2 and the subsequent COVID-19 pandemic has resulted in significant global impact. However, COVID-19 is just one of several high-impact infectious diseases that emerged from wildlife and are linked to the human relationship with nature. The rate of emergence of new zoonoses (diseases of animal origin) is increasing, driven by human-induced environmental changes that threaten biodiversity on a global scale. This increase is directly linked to environmental drivers including biodiversity loss, climate change and unsustainable resource extraction. Australia is a biodiversity hotspot and is subject to sustained and significant environmental change, increasing the risk of it being a location for pandemic origin. Moreover, the global integration of markets means that consumption trends in Australia contributes to the risk of disease spill-over in our regional neighbours in Asia-Pacific, and beyond. Despite the clear causal link between anthropogenic pressures on the environment and increasing pandemic risks, Australia's response to the COVID-19 pandemic, like most of the world, has centred largely on public health strategies, with a clear focus on reactive management. Yet, the span of expertise and evidence relevant to the governance of pandemic risk management is much wider than public health and epidemiology. It involves animal/wildlife health, biosecurity, conservation sciences, social sciences, behavioural psychology, law, policy and economic analyses to name just a few.The authors are a team of multidisciplinary practitioners and researchers who have worked together to analyse, synthesise, and harmonise the links between pandemic risk management approaches and issues in different disciplines to provide a holistic overview of current practice, and conclude the need for reform in Australia. We discuss the adoption of a comprehensive and interdisciplinary 'One Health' approach to pandemic risk management in Australia. A key goal of the One Health approach is to be proactive in countering threats of emerging infectious diseases and zoonoses through a recognition of the interdependence between human, animal, and environmental health. Developing ways to implement a One Health approach to pandemic prevention would not only reduce the risk of future pandemics emerging in or entering Australia, but also provide a model for prevention strategies around the world.


Assuntos
COVID-19 , Pandemias , Animais , Austrália/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , Gestão de Riscos , SARS-CoV-2 , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
6.
Transbound Emerg Dis ; 69(5): e2366-e2377, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35491954

RESUMO

Due to their geographical isolation and small populations, insular bats may not be able to maintain acute immunizing viruses that rely on a large population for viral maintenance. Instead, endemic transmission may rely on viruses establishing persistent infections within hosts or inducing only short-lived neutralizing immunity. Therefore, studies on insular populations are valuable for developing broader understanding of viral maintenance in bats. The Christmas Island flying-fox (CIFF; Pteropus natalis) is endemic on Christmas Island, a remote Australian territory, and is an ideal model species to understand viral maintenance in small, geographically isolated bat populations. Serum or plasma (n = 190), oral swabs (n = 199), faeces (n = 31), urine (n = 32) and urine swabs (n = 25) were collected from 228 CIFFs. Samples were tested using multiplex serological and molecular assays, and attempts at virus isolation to determine the presence of paramyxoviruses, betacoronaviruses and Australian bat lyssavirus. Analysis of serological data provides evidence that the species is maintaining a pararubulavirus and a betacoronavirus. There was little serological evidence supporting the presence of active circulation of the other viruses assessed in the present study. No viral nucleic acid was detected and no viruses were isolated. Age-seropositivity results support the hypothesis that geographically isolated bat populations can maintain some paramyxoviruses and coronaviruses. Further studies are required to elucidate infection dynamics and characterize viruses in the CIFF. Lastly, apparent absence of some pathogens could have implications for the conservation of the CIFF if a novel disease were introduced into the population through human carriage or an invasive species. Adopting increased biosecurity protocols for ships porting on Christmas Island and for researchers and bat carers working with flying-foxes are recommended to decrease the risk of pathogen introduction and contribute to the health and conservation of the species.


Assuntos
Quirópteros , Lyssavirus , Ácidos Nucleicos , Animais , Austrália/epidemiologia , Betacoronavirus , Humanos
7.
Front Pharmacol ; 13: 813087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359837

RESUMO

Coronavirus disease 2019 (COVID-19) caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an acute respiratory disease with systemic complications. Therapeutic strategies for COVID-19, including repurposing (partially) developed drugs are urgently needed, regardless of the increasingly successful vaccination outcomes. We characterized two-dimensional (2D) and three-dimensional models (3D) to establish a physiologically relevant airway epithelial model with potential for investigating SARS-CoV-2 therapeutics. Human airway basal epithelial cells maintained in submerged 2D culture were used at low passage to retain the capacity to differentiate into ciliated, club, and goblet cells in both air-liquid interface culture (ALI) and airway organoid cultures, which were then analyzed for cell phenotype makers. Airway biopsies from non-asthmatic and asthmatic donors enabled comparative evaluation of the level and distribution of immunoreactive angiotensin-converting enzyme 2 (ACE2). ACE2 and transmembrane serine proteinase 2 (TMPRSS2) mRNA were expressed in ALI and airway organoids at levels similar to those of native (i.e., non-cultured) human bronchial epithelial cells, whereas furin expression was more faithfully represented in ALI. ACE2 was mainly localized to ciliated and basal epithelial cells in human airway biopsies, ALI, and airway organoids. Cystic fibrosis appeared to have no influence on ACE2 gene expression. Neither asthma nor smoking status had consistent marked influence on the expression or distribution of ACE2 in airway biopsies. SARS-CoV-2 infection of ALI cultures did not increase the levels of selected cytokines. Organotypic, and particularly ALI airway cultures are useful and practical tools for investigation of SARS-CoV-2 infection and evaluating the clinical potential of therapeutics for COVID-19.

8.
Transbound Emerg Dis ; 69(2): 297-307, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33400387

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging virus that has caused significant human morbidity and mortality since its detection in late 2019. With the rapid emergence has come an unprecedented programme of vaccine development with at least 300 candidates under development. Ferrets have proven to be an appropriate animal model for testing safety and efficacy of SARS-CoV-2 vaccines due to quantifiable virus shedding in nasal washes and oral swabs. Here, we outline our efforts early in the SARS-CoV-2 outbreak to propagate and characterize an Australian isolate of the virus in vitro and in an ex vivo model of human airway epithelium, as well as to demonstrate the susceptibility of domestic ferrets (Mustela putorius furo) to SARS-CoV-2 infection following intranasal challenge.


Assuntos
COVID-19 , Furões , Animais , Austrália , COVID-19/veterinária , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
9.
Genes (Basel) ; 12(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200798

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) in gallinaceous poultry are associated with viral infection of the endothelium, the induction of a 'cytokine storm, and severe disease. In contrast, in Pekin ducks, HPAIVs are rarely endothelial tropic, and a cytokine storm is not observed. To date, understanding these species-dependent differences in pathogenesis has been hampered by the absence of a pure culture of duck and chicken endothelial cells. Here, we use our recently established in vitro cultures of duck and chicken aortic endothelial cells to investigate species-dependent differences in the response of endothelial cells to HPAIV H5N1 infection. We demonstrate that chicken and duck endothelial cells display a different transcriptional response to HPAI H5N1 infection in vitro-with chickens displaying a more pro-inflammatory response to infection. As similar observations were recorded following in vitro stimulation with the viral mimetic polyI:C, these findings were not specific to an HPAIV H5N1 infection. However, similar species-dependent differences in the transcriptional response to polyI:C were not observed in avian fibroblasts. Taken together, these data demonstrate that chicken and duck endothelial cells display a different response to HPAIV H5N1 infection, and this may help account for the species-dependent differences observed in inflammation in vivo.


Assuntos
Galinhas/imunologia , Patos/imunologia , Células Endoteliais/virologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Animais , Células Cultivadas , Galinhas/virologia , Citocinas/genética , Citocinas/metabolismo , Patos/virologia , Células Endoteliais/imunologia , Endotélio Vascular/citologia , Especificidade da Espécie , Transcriptoma
10.
One Health ; 13: 100247, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33969168

RESUMO

SARS-CoV-2, the cause of COVID-19, infected over 100 million people globally by February 2021. Reverse zoonotic transmission of SARS-CoV-2 from humans to other species has been documented in pet cats and dogs, big cats and gorillas in zoos, and farmed mink. As SARS-CoV-2 is closely related to known bat viruses, assessment of the potential risk of transmission of the virus from humans to bats, and its subsequent impacts on conservation and public health, is warranted. A qualitative risk assessment was conducted by a multi-disciplinary group to assess this risk in bats in the Australian context, with the aim of informing risk management strategies for human activities involving interactions with bats. The overall risk of SARS-CoV-2 establishing in an Australian bat population was assessed to be Low, however with a High level of uncertainty. The outcome of the assessment indicates that, for the Australian situation where the prevalence of COVID-19 in humans is very low, it is reasonable for research and rehabilitation of bats to continue, provided additional biosecurity measures are applied. Risk assessment is challenging for an emerging disease where information is lacking and the situation is changing rapidly; assessments should be revised if human prevalence or other important factors change significantly. The framework developed here, based on established animal disease risk assessment approaches adapted to assess reverse zoonotic transmission, has potential application to a range of wildlife species and situations.

11.
Cell Host Microbe ; 29(2): 160-164, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539765

RESUMO

The emergence of alternate variants of SARS-CoV-2 due to ongoing adaptations in humans and following human-to-animal transmission has raised concern over the efficacy of vaccines against new variants. We describe human-to-animal transmission (zooanthroponosis) of SARS-CoV-2 and its implications for faunal virus persistence and vaccine-mediated immunity.


Assuntos
COVID-19/veterinária , Doenças Transmissíveis Emergentes/veterinária , SARS-CoV-2/patogenicidade , Zoonoses/transmissão , Zoonoses/virologia , Animais , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Humanos , Imunidade , Vacinas Virais/imunologia
12.
Transbound Emerg Dis ; 68(4): 2628-2632, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33142031

RESUMO

Many infectious pathogens can be transmitted by highly mobile species, like bats that can act as reservoir hosts for viruses such as henipaviruses, lyssaviruses and coronaviruses. In this study, we investigated the seroepidemiology of protein antigens to Severe acute respiratory syndrome virus (SARS-CoV-1) and Middle eastern respiratory syndrome virus (MERS-CoV) in Grey-headed flying foxes (Pteropus poliocephalus) in Adelaide, Australia sampled between September 2015 and February 2018. A total of 301 serum samples were collected and evaluated using a multiplex Luminex binding assay, and median fluorescence intensity thresholds were determined using finite-mixture modelling. We found evidence of antibodies reactive to SARS-CoV-1 or a related antigen with 42.5% (CI: 34.3%-51.2%) seroprevalence but insufficient evidence of reactivity to MERS-CoV antigen. This study provides evidence that the Grey-headed flying foxes sampled in Adelaide have been exposed to a SARS-like coronavirus.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Coronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Lyssavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Estudos Soroepidemiológicos
13.
Cureus ; 12(6): e8873, 2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32754410

RESUMO

This case study reports the successful deployment of the XEN45 gel stent (AbbVie Inc, Chicago, IL) through an ab externo approach in a 73-year-old woman with refractory glaucoma following high-risk penetrating keratoplasty (PK) 10 years prior. The PK was for corneal perforation secondary to peripheral ulcerative keratitis, which required systemic immunosuppression comprising intravenous cyclophosphamide, azathioprine, and corticosteroids to stabilise the disease and prevent corneal graft rejection. The patient's intraocular pressure was reduced from 40 mmHg preoperatively to 12 mmHg six months after surgery, off medication. The patient's visual acuity and visual fields remained stable. The XEN45 gel stent utilising the ab externo approach can be considered as a potential tool to lower intraocular pressure in patients with glaucoma after corneal keratoplasty.

14.
Viruses ; 12(6)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599823

RESUMO

The respiratory Influenza A Viruses (IAVs) and emerging zoonotic viruses such as Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pose a significant threat to human health. To accelerate our understanding of the host-pathogen response to respiratory viruses, the use of more complex in vitro systems such as normal human bronchial epithelial (NHBE) cell culture models has gained prominence as an alternative to animal models. NHBE cells were differentiated under air-liquid interface (ALI) conditions to form an in vitro pseudostratified epithelium. The responses of well-differentiated (wd) NHBE cells were examined following infection with the 2009 pandemic Influenza A/H1N1pdm09 strain or following challenge with the dsRNA mimic, poly(I:C). At 30 h postinfection with H1N1pdm09, the integrity of the airway epithelium was severely impaired and apical junction complex damage was exhibited by the disassembly of zona occludens-1 (ZO-1) from the cell cytoskeleton. wdNHBE cells produced an innate immune response to IAV-infection with increased transcription of pro- and anti-inflammatory cytokines and chemokines and the antiviral viperin but reduced expression of the mucin-encoding MUC5B, which may impair mucociliary clearance. Poly(I:C) produced similar responses to IAV, with the exception of MUC5B expression which was more than 3-fold higher than for control cells. This study demonstrates that wdNHBE cells are an appropriate ex-vivo model system to investigate the pathogenesis of respiratory viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/virologia , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Animais , Brônquios/citologia , Brônquios/virologia , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Cães , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/epidemiologia , Junções Intercelulares , Células Madin Darby de Rim Canino , Modelos Biológicos , Mucina-5AC/metabolismo , Pandemias , Cultura de Vírus
15.
PLoS One ; 15(5): e0232339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374743

RESUMO

Habitat-mediated global change is driving shifts in species' distributions which can alter the spatial risks associated with emerging zoonotic pathogens. Many emerging infectious pathogens are transmitted by highly mobile species, including bats, which can act as spill-over hosts for pathogenic viruses. Over three years, we investigated the seroepidemiology of paramyxoviruses and Australian bat lyssavirus in a range-expanding fruit bat, the Grey-headed flying fox (Pteropus poliocephalus), in a new camp in Adelaide, South Australia. Over six, biannual, sampling sessions, we quantified median florescent intensity (MFI) antibody levels for four viruses for a total of 297 individual bats using a multiplex Luminex binding assay. Where appropriate, florescence thresholds were determined using finite mixture modelling to classify bats' serological status. Overall, apparent seroprevalence of antibodies directed at Hendra, Cedar and Tioman virus antigens was 43.2%, 26.6% and 95.7%, respectively. We used hurdle models to explore correlates of seropositivity and antibody levels when seropositive. Increased body condition was significantly associated with Hendra seropositivity (Odds ratio = 3.67; p = 0.002) and Hendra virus levels were significantly higher in pregnant females (p = 0.002). While most bats were seropositive for Tioman virus, antibody levels for this virus were significantly higher in adults (p < 0.001). Unexpectedly, all sera were negative for Australian bat lyssavirus. Temporal variation in antibody levels suggests that antibodies to Hendra virus and Tioman virus may wax and wane on a seasonal basis. These findings suggest a common exposure to Hendra virus and other paramyxoviruses in this flying fox camp in South Australia.


Assuntos
Quirópteros/virologia , Vírus Hendra/isolamento & purificação , Lyssavirus/isolamento & purificação , Animais , Quirópteros/sangue , Quirópteros/imunologia , Quirópteros/fisiologia , Feminino , Vírus Hendra/imunologia , Lyssavirus/imunologia , Masculino , Reprodução , Estudos Soroepidemiológicos
16.
Proc Natl Acad Sci U S A ; 117(17): 9529-9536, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284399

RESUMO

Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.


Assuntos
Quirópteros/virologia , Gammaretrovirus/isolamento & purificação , Animais , Austrália , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Phascolarctidae/virologia
17.
PLoS Pathog ; 16(3): e1008412, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226041

RESUMO

Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra virus (HeV) which causes severe clinical disease in humans and other susceptible hosts. Our understanding of the ability of bats to avoid clinical disease following infection with viruses such as HeV has come predominantly from in vitro studies focusing on innate immunity. Information on the early host response to infection in vivo is lacking and there is no comparative data on responses in bats compared with animals that succumb to disease. In this study, we examined the sites of HeV replication and the immune response of infected Australian black flying foxes and ferrets at 12, 36 and 60 hours post exposure (hpe). Viral antigen was detected at 60 hpe in bats and was confined to the lungs whereas in ferrets there was evidence of widespread viral RNA and antigen by 60 hpe. The mRNA expression of IFNs revealed antagonism of type I and III IFNs and a significant increase in the chemokine, CXCL10, in bat lung and spleen following infection. In ferrets, there was an increase in the transcription of IFN in the spleen following infection. Liquid chromatography tandem mass spectrometry (LC-MS/MS) on lung tissue from bats and ferrets was performed at 0 and 60 hpe to obtain a global overview of viral and host protein expression. Gene Ontology (GO) enrichment analysis of immune pathways revealed that six pathways, including a number involved in cell mediated immunity were more likely to be upregulated in bat lung compared to ferrets. GO analysis also revealed enrichment of the type I IFN signaling pathway in bats and ferrets. This study contributes important comparative data on differences in the dissemination of HeV and the first to provide comparative data on the activation of immune pathways in bats and ferrets in vivo following infection.


Assuntos
Antígenos Virais/imunologia , Vírus Hendra/imunologia , Infecções por Henipavirus/imunologia , Imunidade Celular , Imunidade Inata , Pulmão/imunologia , Modelos Imunológicos , Animais , Antígenos Virais/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quirópteros , Furões , Vírus Hendra/genética , Infecções por Henipavirus/genética , Infecções por Henipavirus/patologia , Interferons/genética , Interferons/imunologia , Pulmão/patologia , Pulmão/virologia , Especificidade da Espécie
18.
Front Immunol ; 11: 26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117225

RESUMO

In recent years, viruses similar to those that cause serious disease in humans and other mammals have been detected in apparently healthy bats. These include filoviruses, paramyxoviruses, and coronaviruses that cause severe diseases such as Ebola virus disease, Marburg haemorrhagic fever and severe acute respiratory syndrome (SARS) in humans. The evolution of flight in bats seem to have selected for a unique set of antiviral immune responses that control virus propagation, while limiting self-damaging inflammatory responses. Here, we summarize our current understanding of antiviral immune responses in bats and discuss their ability to co-exist with emerging viruses that cause serious disease in other mammals. We highlight how this knowledge may help us to predict viral spillovers into new hosts and discuss future directions for the field.


Assuntos
Quirópteros/imunologia , Quirópteros/virologia , Vírus de DNA/imunologia , Adaptação ao Hospedeiro/imunologia , Sistema Imunitário/virologia , Vírus de RNA/imunologia , Imunidade Adaptativa , Animais , Reservatórios de Doenças/virologia , Evolução Molecular , Imunidade Inata , Interferons/metabolismo , Zoonoses Virais/imunologia , Zoonoses Virais/transmissão
20.
Viruses ; 11(12)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847282

RESUMO

Bats are known reservoirs of a wide variety of viruses that rarely result in overt clinical disease in the bat host. However, anthropogenic influences on the landscape and climate can change species assemblages and interactions, as well as undermine host-resilience. The cumulative result is a disturbance of bat-pathogen dynamics, which facilitate spillover events to sympatric species, and may threaten bat communities already facing synergistic stressors through ecological change. Therefore, characterisation of viral pathogens in bat communities provides important basal information to monitor and predict the emergence of diseases relevant to conservation and public health. This study used targeted molecular techniques, serological assays and next generation sequencing to characterise adenoviruses, coronaviruses and paramyxoviruses from 11 species of insectivorous bats within the South West Botanical Province of Western Australia. Phylogenetic analysis indicated complex ecological interactions including virus-host associations, cross-species infections, and multiple viral strains circulating concurrently within selected bat populations. Additionally, we describe the entire coding sequences for five alphacoronaviruses (representing four putative new species), and one novel adenovirus. Results indicate that viral burden (both prevalence and richness) is not homogeneous among species, with Chalinolobus gouldii identified as a key epidemiological element within the studied communities.


Assuntos
Biodiversidade , Quirópteros/virologia , Adenoviridae/classificação , Adenoviridae/genética , Adenoviridae/imunologia , Adenoviridae/isolamento & purificação , Animais , Quirópteros/classificação , Coronavirus/classificação , Coronavirus/genética , Coronavirus/imunologia , Coronavirus/isolamento & purificação , Fezes/virologia , Comportamento Alimentar , Genoma Viral/genética , Paramyxovirinae/classificação , Paramyxovirinae/genética , Paramyxovirinae/imunologia , Paramyxovirinae/isolamento & purificação , Filogenia , Análise de Sequência , Estudos Soroepidemiológicos , Especificidade da Espécie , Proteínas Virais/genética , Proteínas Virais/imunologia , Austrália Ocidental/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...